

PII: S0040-4039(96)01880-1

Nucleophilic Substitution in Benzylic Phosphonothioic Dichlorides Formation of a Diamide without Intervention of the Amidic Chloride

Martin J.P. Harger

Department of Chemistry, The University, Leicester LE1 7RH, UK.

Abstract: The diamide $RP(S)(NEt_2)_2(R = PhCH_2 \text{ or } Ph_2CH)$ is formed directly from the dichloride $RP(S)Cl_2$ more quickly than it is from the amidic chloride $RP(S)(NEt_2)Cl$ Copyright © 1996 Elsevier Science Ltd

Having had no difficulty preparing the *NN*-dimethyl phosphonamidothioic chloride 1 (R = PhCH₂) from the dichloride 2 (R = PhCH₂) and Me₂NH (2 equiv.; Me₂NH₂Cl byproduct), we anticipated no problems in obtaining the corresponding *NN*-diethyl compound 3. In the event, reaction of the dichloride (δ_P 86.6) with two equivalents of Et₂NH (in CH₂Cl₂) gave a mixture of two products. δ_P 93.2 and 82.1, together with unchanged starting material. When a larger quantity of Et₂NH (5 equiv.) was used, the dichloride was completely consumed but the same mixture of products was still obtained. The products were separated by chromatography. One was the expected phosphonamidothioic chloride 3 (R = PhCH₂), m.p. 43.5–44 °C, δ_P 93.2, δ_H (CDCl₃) 7.42–7.30 (5 H, m), 3.80 (2 H, ABP, δ_A 3.82, δ_B 3.78, J_{AB} 14.5, J_{AP} = J_{BP} = 16.5), 3.34 (4 H, dq, J_{PH} 15.5, J_{HH} 7) and 1.08 (6 H, t, J_{HH} 7), m/z 263, 261 (M^+ , 20 %) and 91 (100), the other the diamide 4 (R = PhCH₂), δ_P 82.1, δ_H (CDCl₃) 7.45–7.20 (5 H, m), 3.40 (2 H, d, J_{PH} 15), 3.07 (8 H, m) and 1.01 (12 H, t, J_{HH} 7), m/z 298 (M^+ , 20 %) and 207 (M^+ —CH₂Ph, 100).²

It is remarkable that formation of the diamide should compete with formation of the amidic chloride; on both electronic³ and steric⁴ grounds, one would expect Et_2NH to react much more quickly with the dichloride 2, to give 3, than with the amidic chloride 3, to give 4. Indeed, using a large excess of Et_2NH (10 equiv.; 0.8 mol dm⁻³ in CH_2Cl_2 ; 30 °C), the amidic chloride 3 (R = PhCH₂) and the diamide 4 (R = PhCH₂) were formed, over 0.8 h, in a 1.3:1 ratio, but that ratio then remained practically unchanged over a further 20 h. Clearly, the amidic chloride does *not* react with Et_2NH under the conditions of our reaction, so the diamide cannot have been formed from the amidic chloride. Rather, it must be a primary product, formed by a faster route directly from the dichloride. As to the nature of the direct route, some further observations are pertinent.

First, unlike the benzylic dichloride ($R = PhCH_2$), the phenyl and methyl compounds 2 (R = Ph or Me)

Scheme 1

behave in the expected way with Et₂NH, *i.e.* they form the amidic chlorides 3 quantitatively. The diamides 4 can be obtained, but only by much slower subsequent reaction of the amidic chlorides. Second, when the benzylic dichloride 2 (R = PhCH₂) was treated with Et₂ND (90 atom % D; 0.8 mol dm⁻³; 30 °C) and the reaction quenched at 25 % completion (t = 3 min), the recovered dichloride contained deuterium [1 H NMR: benzylic methylene ca. 1.2 H/ 0.8 D (average) by integration]. Since H/D exchange occurs as readily as substitution, deprotonation of the α-carbon atom may be involved in substitution. Third, the benzhydryl substrate 2 (R = Ph₂CH)⁵ (δ_{P} 89.7) also exhibits the direct route to diamide; with 0.8 mol dm⁻³ Et₂NH, the amidic chloride 3 (R = Ph₂CH), δ_{P} 97.3, and the diamide 4 (R = Ph₂CH), δ_{P} 81.2, are formed in a 1:4 ratio, *i.e.* the diamide is the major product. Now the direct route is seen even with Me₂NH, to the extent that the yield of the diamide (δ_{P} 85.8) is ten times that of the amidic chloride (δ_{P} 99.6), and its formation direct from the dichloride is $\gg 10^{3}$ times faster than its formation *via* the amidic chloride. Clearly, a single hydrogen on the α-carbon of the substrate is sufficient for direct disubstitution to proceed.

Scheme 1 shows (for $R = PhCH_2$) what may be happening in these reactions. The normal $S_N 2(P)$ pathway **b** is retarded by steric factors, in the substrate⁴ (when $R = Ph_2CH$) and/or the nucleophile (when the amine is Et_2NH).⁶ This, and the acidity of the benzylic hydrogen atoms, allows pathway **a** to compete. Here the amine acts initially as a base (ElcB-like elimination of HCl), not as a nucleophile. The resulting three-coordinate P^V species **5** is reactive and sterically accessible. The amine does now act as a nucleophile, forming the amidic chloride by addition or the new three-coordinate P^V species **6** by substitution (displacement of Cl). The latter, on addition of amine, gives the diamide.

There are many precedents for transient three-coordinate P^V species reacting by addition, but not by substitution.⁷ Indeed, it is precisely because they add so readily, forming stable four-coordinate products, that their existence is so fleeting.⁷ Nonetheless, in our reactions it seems that substitution $(5 \to 6)$ competes with addition, even though it serves only to convert one transient three-coordinate P^V species into another.

REFERENCES AND NOTES

- 1. Coogan, M.P.; Harger, M.J.P. J. Chem. Soc., Perkin Trans. 2, 1994, 2101.
- 2. All new compounds were fully characterised (NMR, MS, elemental analysis or accurate M^{+}).
- 3. Crunden, E.W.; Hudson, R.F. J. Chem. Soc., 1962, 3591.
- 4. Razvodovskaya, L.V.; Grapov, A.F.; Mel'nikov, N.N. J. Gen. Chem. USSR. 1969, 39, 1230.
- 5. New substrate 2 (R = Ph₂CH) prepared from Ph₂CHP(O)Cl₂ by O/S exchange (PSCl₃-P₂S₅, DMF cat., 140 °C); m.p. 84.5–85 °C; m/z (CI; NH₃) 318, 320, 322 [(M+NH₄)⁺, 100 %].
- 6. Kanavarioti, A.; Stronach, M.W.; Ketner, R.J.; Hurley, T.B. J. Org. Chem., 1995, 60, 632.
- 7. Westheimer, F.H. Chem. Rev., 1981, 81, 313; Regitz, M; Mass, G. Top. Curr. Chem., 1981, 97, 71.